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• Hubble Space Telescope Observations

• Damage Mechanism Investigation
– Retrieved Specimen Failure Analysis

– Simulated Environmental Exposures

• Replacement Material Selection

• Conclusions
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• Images
– SM1 Observations

– SM2 
• Observations

• Damage Map

– SM2 Aft Bulkhead Discoloration

– Retrieved Specimens

• Orbital Environment
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• Deployed April 25, 1990

• Altitude -- 598 km (320 nmi)
• 28.5° orbit inclination

• First Servicing Mission 
• December 1993 (3.6 years)

• Second Servicing Mission
• February 1997 (6.8 years)
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• Multi Layer Insulation Cracks
– SM1: obvious damage only on anti-solar side

– SM2: 
• more than 100 obvious cracks

• severe cracking on both solar and anit-solar side

• some cracks curled

• Silver Teflon Tape on radiator surfaces 
showed dark streaks

Observations    -    Mechanism    -    Replacement    -    Conclusions
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• Radiation
– Solar Exposure:  UV, VUV, Soft X-rays (solar flares)

– Trapped electrons and protons

• Atomic Oxygen:  sweeping ram

• Thermal Cycling
– Solar facing:  -100 to +50 °C

– Anti-solar side:  -200 to -10 °C

• Synergistic Effects
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Sample

Equiv.
Solar hr
(ESH)

X-ray
fluence
(J/m2)

Trapped electrons and
proton fluence > 40 keV

(#/cm2)

Plasma
fluence
(#/cm2)

Atomic
Oxygen

(atoms/cm2)

SM1
MSS-A

11,339 0.5-4Å: 4.9

1-8Å: 74

electrons: 1.39 x 1013

protons: 7.96 x 1019
electrons: 3.18 x 1019

protons: 1.11 x 1019
1.56 x 1020

SM2
MLI

33,638 0.5-4Å: 16

1-8Å: 252.4

electrons: 2.14 x 1013 electrons: 4.66 x 1019 1.64 x 1020

SM2
CVC

19,308 0.5-4Å: 6.1

1-8Å: 96.9

protons: 1.83 x 1010 protons: 1.63 x 1019
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• Failure Analysis

• Simulated Exposures
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5000X

Smooth Fracture (slow crack growth):  created and 
propagated in space

MLI Outer Layer Cracking (SM2)

Image:  Len Wang, Unisys/GSFC Materials Engineering Branch
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Mud cracking/buckling of the VDA (LS SM2)

100X 800X

Tensile Cracks

Buckling

Vapor Deposited Metal Cracking
• Mud Tiling

> Homogeneous (random direction changes)

> Tensile cracks and buckling of metal

> ~10 µm x 10 µm up to 40 µm x 40 µm

Image:  Len Wang, Unisys/GSFC Materials Engineering Branch

Observations    -    Mechanism    -    Replacement    -    Conclusions
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• MLI Outer Layer Cracking:  Slow Crack Growth
– Slow propagation; low stress; environmental factor 

• Vapor Deposited Metal Cracking
– Unsupported MLI:  Thermal cycling; small α effect

– Bonded CVC: Application; large α effect from adhesive

• FEP Damage: chain scission; increased crystallinity 
– Bulk embrittlement

• Elongation:  Pristine = ~350%; SM1 = ~150%; SM2 = 0%

– Caused most of α increase by SM2 α 
• Absorptance:  Pristine = 0.125; SM1 = 0.17-0.26;  SM2 = 0.196

– No crystallinity increase in SM1 specimens

Observations    -    Mechanism    -    Replacement    -    Conclusions
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• Synchrotron Soft X-ray and VUV  Exposure 
Brookhaven National Laboratories
– High flux, narrow energy bands

– 69 to 1900 eV

• Electron and Proton Exposure and Rapid Thermal 
Cycling
– HST mission-equivalent fluences of 

0.5 MeV electrons and 1 MeV protons

– Thermal cycled:  -100 to +60 °C; 15 second cycles

Observations    -    Mechanism    -    Replacement    -    Conclusions
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• Damage at very high fluences 
– 137 times EOL fluence at 1489 eV  => 83% loss in 

elongation 

• Negligible damage at HST fluences

• VUV and soft x-ray (69 to 1900 eV) alone 
insufficient to cause observed damage to HST

Observations    -    Mechanism    -    Replacement    -    Conclusions
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Electron and Proton Exposure and 
Rapid Thermal Cycling

• Damage not as severe as HST at SM2-equivalent exposure

• HST EOL (20 year) exposure yielded 46% elongation loss
– Initial elongation: ~356 %

– After radiation: ~290 %

– After added thermal cycling: ~190 %

• Conclusions:
– Electrons and protons reduced elongation and ultimate strength

– Additional thermal cycling reduced elongation and ultimate 
strength

Observations    -    Mechanism    -    Replacement    -    Conclusions
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• HST Observations:
– SM1:  Limited, localized cracking of 5 mil FEP on both solar 

and anti-solar sides 

– SM2:  Significant cracking on both sides

• Failure Analysis of Returned Specimen
– Cracking is a form of slow crack growth

– FEP damage:  chain scission, increased crystallinity 

• Environmental Exposures
– HST fluence of VUV/ soft x-ray alone insufficient

– HST fluence electron and proton + thermal cycling 
significantly reduced elongation 

Observations    -    Mechanism    -    Replacement    -    Conclusions
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• Cracking Mechanism:
– Thermal cycling with deep-layer damage from 

electrons and protons

– Damage increases with combined total dose of   
UV, X-rays, electrons, protons and thermal cycling

• Solar absorptance affected by FEP degradation 
and VDS flaws (significant increase from 
adhesives)

Observations    -    Mechanism    -    Replacement    -    Conclusions
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• Candidate Replacement Materials

• Test Environments

• Selection

Observations    -    Mechanism    -    Replacement    -    Conclusions
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• Select replacement material with 10 year life
– FRB prioritized 9 performance criteria: 

• solar absorptance/emittance requirements
– at 10 years   α/ε ≤ 0.28

• maintain mechanical integrity

– FRB rated each suggested material on anticipated 
performance in established criteria

– 17 suggested materials pared down to six candidates

Observations    -    Mechanism    -    Replacement    -    Conclusions
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10 mil FEP/VDS/Inconel/adhesive/Nomex scrim

5 mil FEP/VDS/Inconel/adh/fiberglass scrim/adh/2 mil Kapton

10 mil FEP/VDA/adhesive/Nomex scrim

5 mil FEP/VDA/adhesive/fiberglass scrim/adhesive/2 mil Kapton

5 mil FEP/VDS/Inconel/adhesive/Nomex scrim

5 mil FEP /VDA/adhesive/Nomex scrim

OCLI multi-layer oxide UV blocker/2 mil white Tedlar

5 mil Teflon FEP/VDA  (the current material)

SiO2/Al2O3/Ag/Al2O3/4 mil stainless steel

Proprietary Teflon FEP/AZ93 White Paint/Kapton

Observations    -    Mechanism    -    Replacement    -    Conclusions
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• Sequential exposure to combinations of
– electrons/protons

– thermal cycling

– ultraviolet radiation

• Four candidate material sets exposed
– Dose/fluence based on 10 year HST environment

• Two sets of current material exposed
– Dose/fluence based on 6.8 year HST environment

– Calibration/Control

– atomic oxygen 

– soft x-rays

Observations    -    Mechanism    -    Replacement    -    Conclusions
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First Electron Exposures Proton Thermal Cycles
Set Exposure Duration Type Energy Energy AO X-ray # Load UV

Location (years) (keV) (keV) (years) (years) (ESH)

M1 MSFC 10 Dose 50 to 500 700 10 - 20,000 taped -
M2 MSFC 10 Dose 50 to 500 700 - 10 3,200 taped 505
M3 MSFC 6.8 Dose 50 to 500 700 6.8 - 20,000 taped -

B1 Boeing 10 Fluence 40 40 - 10 1,000 spring -
B2 Boeing 10 Fluence 40 40 - - - - -
B3 Boeing 6.8 Fluence 40 40 - - - - -

L1 LeRC - - - - - - >1500 mass -
G1 GSFC - - - - - - - - 374

MSFC LeRC GSFC

Observations    -    Mechanism    -    Replacement    -    Conclusions
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• Candidate performance documented following 
exposures
– Absorptance

– Crack Type/Extent

• Candidates scored and ranked according to 
original performance criteria
– Included FRB member scores for each criterion 

– Score for given criterion weighted

Observations    -    Mechanism    -    Replacement    -    Conclusions
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5 mil FEP /VDA/adhesive/Nomex scrim
10 mil FEP/VDA/adhesive/Nomex scrim

5 mil FEP/VDA  (the current material)

10 mil FEP/VDS/Inconel/adhesive/Nomex scrim

5 mil FEP/VDS/Inconel/adhesive/Nomex scrim

5 mil FEP/VDS/Inconel/adh/fiberglass scrim/adh/2 mil Kapton

OCLI multi-layer oxide UV blocker/2 mil white Tedlar

5 mil FEP/VDA/adhesive/fiberglass scrim/adhesive/2 mil Kapton

Two ruled out prior to ranking for other considerations

Observations    -    Mechanism    -    Replacement    -    Conclusions
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• Selected Material
– 5 mil FEP/VDA/adhesive/Nomex scrim

• Simulated Environments and Evaluation
– Test plan produced cracks similar to orbit

– Results vendor specific

Observations    -    Mechanism    -    Replacement    -    Conclusions
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Conclusions
• Minor damage to unsupported 5 mil FEP at 3.6 years

• Damage Mechanism 
– Unsupported films:  slow crack growth

• electrons/protons with thermal cycling ; UV, VUV, X-rays add

– Tapes:  application techniques
• metal backing cracked; UV darkened adhesive

• Replacement Material
– No FEP alternatives; need low α, radiation resistant thin films 

– Need UV stable adhesives

• Effects of LEO radiation on outer layer materials must be 
considered in design

Observations    -    Mechanism    -    Replacement    -    Conclusions
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Appendix:  Candidate Replacement Material Performance

• Solar Absorptance measured after each exposure
– Exposure Correlation: 

• Largest change following thermal cycling of electron/proton/AO exposed specimens

– Candidate Ranking:

• Specimens with VDS had greatest increase

• Crack Propagation Types
– Cracks comparable to orbital damage produced (slow crack growth 1)

– Other types of cracking observed:

• Tensile overload, slow crack growth 2, combination

– Exposure Correlation:

• Cracks propagated only during thermal cycling of exposed specimens

• Cracks most like HST following 20,000 thermal cycles of  electron/proton/AO exposed specimens

• Crack Extent
– Mechanical integrity:  Crack Extent

• Crack Length not used because of scrim

– Crack Extent Characterization

• Number of scrim fibers passed

• Delamination

• Length

– Candidate Ranking

• Fiberglass scrim candidates poor

• 10 mil candidates better than 5 mil


